Can a TAG Semantics Be Compositional?

Stuart M. Shieber
School of Engineering and Applied Sciences
Harvard University

Presented to the Ninth International Workshop on Tree Adjoining Grammars and Related Formalisms, University of Tübingen, Tübingen, Germany, June 8, 2008.

Author contact:
Stuart M. Shieber
Maxwell-Dworkin Laboratory - 245
Harvard University
33 Oxford Street
Cambridge, MA 02138
shieber@seas.harvard.edu

This work is licensed under the Creative Commons Attribution-NonCommercialShareAlike License. To view a copy of this license, visit http://creativecommons.org/ licenses/by-nc-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Outline

Review of synchronous TAG for semantics
What compositionality is and isn't

- What it ought to mean to be worth worrying about
- Why it is a subjective notion

Relation to bimorphisms
Where synchronous TAG semantics are and aren't compositional

Synchronous TAG Semantics

TAG Syntax

brockway

harrison

NP

Harrison
intentionally

TAG Syntax

harrison
tripped

intentionally
brockway
e
1
b

TAG Semantics

Synchronous TAG

 Syntax-Semantics

Quantifiers

$\exists($ one,$\lambda x . \operatorname{trip}(b, x))$

คuncincinern

School of Engineering and Applied Sciences wive Harvard University

Complex Syntax with Simple Semantics: Idioms

Simple Syntax with Complex Semantics: Semantic Decomposition

Kim wanted the report tomorrow.

- want (k, tomorrow(have(k, the-report)))
$=[\lambda x \cdot w a n t(x$, tomorrow $($ have $(x$, the-report $)))] k$

- McCawley, 1979, pages 84-86

Coverage

Can handle several putatively hard cases without additional machinery (with reservations...):

- Scope ambiguities Everyone loves someone.
- Scope interactions of VP-modifiers and quantifiers Sandy usually likes everyone.
- No scope out of finite clause Sandy thinks everyone loves someone.
- Pied-piped relative clauses A problem whose solution was difficult stumped Bill.
- Embedded quantifiers in prepositional phrases Two politicians spy on someone from every city.

Compositionality

Compositionality

A means for guaranteeing the systematicity of the syntax-semantics relation.

Compositionality (informal): The meaning of an expression is determined by the meanings of its immediate parts along with their method of combination.
"The meaning of a compound expression is a function of the meaning of its parts and of the syntactic rule by which they are combined." (Partee et al., 1990, p. 318, as cited by Janssen, 1997)

A Compositional Semantics

$$
\begin{aligned}
& \text { Num } \rightarrow \text { Num Digit } \\
& \text { Num } \rightarrow \text { Digit } \\
& \text { Digit } \rightarrow \underline{0} \\
& \text { Digit } \rightarrow 1
\end{aligned}
$$

A Compositional Semantics

$$
\begin{array}{lr}
\text { Num } \rightarrow \text { Num Digit } & 10 \times \llbracket \text { Num } \rrbracket+\llbracket \text { Digit } \rrbracket \\
\text { Num } \rightarrow \text { Digit } & \llbracket \text { Digit } \rrbracket \\
\text { Digit } \rightarrow \underline{0} & 0 \\
\text { Digit } \rightarrow \underline{1} & 1
\end{array}
$$

A Compositional Semantics

$$
\begin{array}{lr}
\text { Num } \rightarrow \text { Num Digit } & 10 \times \llbracket \text { Num } \rrbracket+\llbracket \text { Digit } \rrbracket \\
\text { Num } \rightarrow \text { Digit } & \llbracket \text { Digit } \rrbracket \\
\text { Digit } \rightarrow \underline{0} & 0 \\
\text { Digit } \rightarrow \underline{1} & 1
\end{array}
$$

$$
\begin{aligned}
\llbracket \underline{101 \rrbracket} & =10 \times \llbracket \underline{10} \rrbracket+\llbracket \underline{\rrbracket} \rrbracket \\
& =10 \times(10 \times \llbracket \underline{1} \rrbracket+\llbracket \underline{0} \rrbracket)+\llbracket \underline{1} \rrbracket \\
& =10 \times(10 \times 1+0)+1 \\
& =101(5) \\
\llbracket 0011 \rrbracket & =3
\end{aligned}
$$

Near Misses

Precompositionality: The meaning of an expression is determined by its parts.

Representational compositionality: The meaning representation of an expression is determined by the meaning representations of its parts along with their method of combination.

Near Misses

Precompositionality: The meaning of an expression is determined by its parts.

$$
\begin{array}{llll}
A & \rightarrow & B C & {[A \llbracket B \rrbracket \llbracket C \rrbracket]} \\
S^{*} & \rightarrow & S & \mu(\llbracket S \rrbracket)
\end{array}
$$

Representational compositionality: The meaning representation of an expression is determined by the meaning representations of its parts along with their method of combination.

Near Misses

Precompositionality: The meaning of an expression is determined by its parts.

$$
\begin{array}{llll}
A & \rightarrow & B C & {[A \llbracket B \rrbracket \llbracket C \rrbracket]} \\
S^{*} & \rightarrow & S & \mu(\llbracket S \rrbracket)
\end{array}
$$

Representational compositionality: The meaning representation of an expression is determined by the meaning representations of its parts along with their method of combination.

Montague's Approach

Montagovian compositionality: The meaning of an expression is a homomorphic image of the expression's syntactic derivation.

$$
\begin{aligned}
h(\mathrm{OP}(P, Q)) & =\hat{h}_{\mathrm{OP}}(h(P), h(Q)) \\
\llbracket N u m \text { Digit } \rrbracket & =10 \times \llbracket N u m \rrbracket+\llbracket \text { Digit } \rrbracket \\
\hat{h} & =\lambda x, y \cdot 10 \times x+y
\end{aligned}
$$

An Example: Relative Clauses

S3: If $\zeta \in P_{C N}$ and $\phi \in P_{t}$, then $F_{3, n}(\zeta, \phi)=\zeta$ such that ϕ^{\prime}, and ϕ^{\prime} comes from ϕ by replacing each occurrence of $h e_{n}$ or him $_{n}$ by [the gender-appropriate unsubscripted pronoun].

T3: If $\zeta \in P_{C N}, \phi \in P_{t}$, and ζ, ϕ translate into $\zeta^{\prime}, \phi^{\prime}$ respectively, then $F_{3, n}(\zeta, \phi)$ translates into $\lambda x_{n} \cdot \zeta^{\prime}\left(x_{n}\right) \wedge \phi^{\prime}$.

Dispensibility of Logical Form

Montague's relative clause translation rule: "If $\zeta \in P_{C N}, \phi \in P_{t}$, and ζ, ϕ translate into $\zeta^{\prime}, \phi^{\prime}$ respectively, then $F_{3, n}(\zeta, \phi)$ translates into $\lambda x_{n} \cdot \zeta^{\prime}\left(x_{n}\right) \wedge \phi^{\prime}$."

Thomason's clarificatory footnote: "To avoid collision of variables, the translation must be $\lambda x_{m} \cdot \zeta\left(x_{m}\right) \wedge \psi$, where ψ is the result of replacing all occurrences of x_{n} in ϕ^{\prime} by occurrences of x_{m}, where m is the least even number such that x_{m} has no occurrences in either ζ^{\prime} or ϕ^{\prime}."

Janssen's correction: "Thomason's reformulation is an operation on representations, and not on meanings. . . . The operation on meanings can be represented in a much simpler way, using a polynomial, viz.:

$$
\left[\lambda P \cdot\left(\lambda x_{n} \cdot P\left(x_{n}\right) \wedge \phi^{\prime}\right)\right]\left(\zeta^{\prime}\right)
$$

An Example: Relative Clauses

S3: If $\zeta \in P_{C N}$ and $\phi \in P_{t}$, then $F_{3, n}(\zeta, \phi)=\zeta$ such that ϕ^{\prime}, and ϕ^{\prime} comes from ϕ by replacing each occurrence of $h e_{n}$ or him $_{n}$ by [the gender-appropriate unsubscripted pronoun].

T3: If $\zeta \in P_{C N}, \phi \in P_{t}$, and ζ, ϕ translate into $\zeta^{\prime}, \phi^{\prime}$ respectively, then $F_{3, n}(\zeta, \phi)$ translates into $\lambda x_{n} \cdot \zeta^{\prime}\left(x_{n}\right) \wedge \phi^{\prime}$.
"man such that he left"

- "man" " "such that he e_{2} left"
- man •left (x_{2})
- $\lambda x_{2} \cdot \operatorname{man}\left(x_{2}\right) \wedge l e f t\left(x_{2}\right)$
- $\left[\lambda P \cdot\left(\lambda x_{2} \cdot P\left(x_{2}\right) \wedge l e f t\left(x_{2}\right)\right)\right]($ man $)$

Is Compositionality Possible?

$$
\begin{aligned}
& \text { Num } \rightarrow \text { Num Digit } \\
& \text { Num } \rightarrow \text { Digit } \\
& \text { Digit } \rightarrow \underline{0} \\
& \text { Digit } \rightarrow \underline{1}
\end{aligned}
$$

Is Compositionality Possible?

Num \rightarrow Num Digit	Num \rightarrow Digit Num
Num \rightarrow Digit	Num \rightarrow Digit
Digit $\rightarrow 0$	Digit $\rightarrow \underline{0}$
Digit $\rightarrow \underline{1}$	Digit $\rightarrow \underline{1}$

Impossibility of compositional semantics for this language:

$$
\begin{aligned}
\llbracket \underline{101 \rrbracket} & =f(\llbracket \underline{1}], \llbracket \underline{\boxed{01} \rrbracket)} \\
& =f(\llbracket \underline{\rrbracket}], \llbracket 1 \rrbracket) \\
& =\llbracket \underline{11 \rrbracket}]
\end{aligned}
$$

Is Compositionality Vacuous?

For arbitrary language L and meaning function $\llbracket \rrbracket: L \rightarrow M$, there is a function $\mu: L \rightarrow M^{\prime}$ such that

$$
\begin{aligned}
\mu(P Q) & =\mu(P)(\mu(Q)) \\
\mu(P-1) & =\llbracket P \rrbracket
\end{aligned}
$$

(Zadrozny, 1994)

The Counterexample Revisited

Num \rightarrow Num Digit	Num \rightarrow Digit Num
Num \rightarrow Digit	Num \rightarrow Digit
Digit $\rightarrow \underline{0}$	Digit $\rightarrow \underline{0}$
Digit $\rightarrow \underline{1}$	Digit $\rightarrow \underline{1}$

Montague's Approach

Montagovian compositionality: The meaning of an expression is a homomorphic image of the expression's syntactic derivation.

Contextual non-synonymy:

- I believe Lewis Carroll is the greatest children's book author.
- I believe Charles Dodgson is the greatest children's book author.

Montague's Approach

Montagovian compositionality: The meaning of an expression is a homomorphic image of the expression's syntactic derivation.

Contextual non-synonymy:

- I believe Lewis Carroll is the greatest children's book author.
- I believe Charles Dodgson is the greatest children's book author.

$$
\text { Adjust denotations: } e \Rightarrow\langle s, e\rangle
$$

Subjectivity of Compositionality

Compositionality（informal）：The meaning of an expression is determined by the meanings of its immediate parts along with their method of combination．
－What are appropriate meanings？
－【101］$=5$
$\llbracket 101]=\langle 5,3\rangle$
$\llbracket 101]=[\underline{1}[\underline{0}[1]]]$
－［Lewis Carroll］：e
【Lewis Carroll】 ：$\langle s, e\rangle$

Subjectivity of Compositionality

Compositionality（informal）：The meaning of an expression is determined by the meanings of its immediate parts along with their method of combination．
－What are appropriate meanings？
－【101］＝ 5
0
－［Lewis Carroll】 ：e
【Lewis Carroll】 ：$\langle s, e\rangle$

Compositionality of STAG Semantics

Compositionality

Montagovian compositionality: The meaning of an expression is a homomorphic image of the expression's syntactic derivation.

$$
\begin{aligned}
w & =f_{\text {syn }}(D) \\
\llbracket w \rrbracket & =h_{\text {sem }}(D)
\end{aligned}
$$

Compositionality and Bimorphisms

Compositionality and Bimorphisms

Summary

Compositional relation defined by

- A generalized bimorphism
- Input function is arbitrary
- Output function is a homomorphism
- to a pretheoretically appropriate domain
$B(L, R)$
$B(D, M)$
tree transduction
$B(L C, L C)$
STSG
$B(E L C, E L C)$ STAG
$B(a r b, M)$
compositional relation

Summary

Compositional relation defined by

- A generalized bimorphism
- Input function is arbitrary
- Output function is a homomorphism
- to a pretheoretically appropriate domain
$B(L, R)$

TAG to TSG

TAG to TSG

TAG to TSG

intentionally

TAG to TSG

tripped

trip
intentionally

TAG to TSG

Quantifiers

$\exists($ one,$\lambda x . \operatorname{trip}(b, x))$

Compositional STAG Quantifier Analyses

1. Reconstruct open meaning representations as selfcontained semantic objects
2. Use an analysis with closed representations

- "Variable-free semantics"
- Hendriks, 1993

Conclusion

Why compositionality?

- Pelletier: "Warm, fuzzy feeling"
- Janssen: As a guide for restrictive theorizing
- As a means for guaranteeing systematicity

Is STAG semantics compositional?

- More than you would have thought
- Less than completely

